Thermal Barrier Coating Materials Review
Termal Bariyer Kaplama Malzemeleri İncelemesi
Keywords:
Aero Gas Turbine engines;, Thermal barrier coatings (TBCs), Thermal and mechanical properties, Top coat, Novel CeramicsAbstract
The priority technological direction of thermal protection of hot section components, basically turbine parts is the development of thermal barrier coatings (TBCs) in order to improve the operational performance of aero gas turbine engines (GTEs). The application of this coating, which can lower the surface temperature of the substrate material and have high oxidation resistance, was of great importance. The focus of this paper is on choosing TBCs with lower conductivity and longer life than coatings used in industry today and on the study of the effect of TBCs with low thermal conductivity on the longevity and performance of the GTE. Although this type of coating consists of multilayers, here only an overview of the coating materials used in their top layer is given. This review is based essentially on the thermal and mechanical properties of these materials. Although there are many oxide materials that meet the specified requirements and are considered suitable for use as a ceramic top layer in the TBC system, the most promising one was selected. Compared to traditional TBC systems, it is a pyrochlore type oxide with very low thermal conductivity, high thermal stability, and some other advantages - Lanthanum zirconate (La2Zr2O7, LZ).
Downloads
References
Y. Xue, X. Zhao, Y. An, Y. Wang, M. Gao, H. Zhou, J. Chena, High-entropy (La0.2Nd0.2Sm0.2Eu0.2 Gd0.2)2Ce2O7: A potential thermal barrier material with improved thermo-physical properties, Journal of Advanced Ceramics 11(4), 615–628 (2022).
D.R. Clarke, M. Oechsner, N.P. Padture, Thermal barrier coatings for more efficient gas-turbine engines, MRS Bulletin 37(10), 891-898 (2012).
N.P. Padture, M. Gell, E.H. Jordan, Thermal barrier coatings for gas-turbine engine applications, Science 296, 280–284 (2002).
Z.Y. Wei, G.H. Meng, L. Chen et al., Progress in ceramic materials and structure design toward advanced thermal barrier coatings, Journal of Advanced Ceramics 11(7), 985–1068 (2022).
A. Pakseresht, F. Sharifianjazi, A. Esmaeilkhanian, L. Bazli, M.R. Nafchi, M. Bazli, K. Kirubaharan, Failure mechanisms and structure tailoring of YSZ and new candidates for thermal barrier coatings: A systematic review, Materials and Design 222, 111044 (2022).
S. Wu, Y. Zhao, W. Li, W. Liu, Y. Wu, F. Liu, Research Progresses on Ceramic Materials of Thermal Barrier Coatings on Gas Turbine, Coatings 11(1), 79 (2021).
J. Song, L. Wang, J. Yao, H. Dong, Multi-Scale Structural Design and Advanced Materials for Thermal Barrier Coatings with High Thermal Insulation: A Review, Coatings 13, 343 (2023).
A.G. Evans, D.R. Mumm, J.W. Hutchinson, G.H. Meier, F.S. Pettit, Mechanisms controlling the durability of thermal barrier coatings, Progress in Materials Science 46(5), 505–553 (2001).
R. Sivakumar, B.L. Mordike, High temperature coatings for gas turbine blades: A review, Surface and Coatings Technology 37(2), 139-160 (1989).
A.M. Karlsson, J.W. Hutchinson, A.G. Evans, The displacement of the thermally grown oxide in thermal barrier systems upon temperature cycling, Materials Science and Engineering A 351, 244-257 (2003).
K. Kokini, Y.R. Takeuchi, B.D. Choules, Surface thermal cracking of thermal barrier coatings owing to stress relaxation: zirconia vs mullite, Surface and Coatings Technology 82, 77-82 (1996).
X.Q. Cao, R. Vassen, D. Stoever, Ceramic materials for thermal barrier coatings, Journal of the European Ceramic Society 24(1), 1–10 (2004).
R. Vaßen, E. Bakan, D.E. Mack, O. Guillon, Perspective on Thermally Sprayed Thermal Barrier Coatings: Current Status and Trends, Journal of Thermal Spray Technology 31(4), 685–698 (2022).
S. Stecura, Effects of Compositional Changes on the Performance of a Thermal Barrier Coating System, Washington: NASA TM-78976, National Aeronautics and Space Administration, 1978.
E. Bakan, R. Vaßen, Ceramic Top Coats of Plasma-Sprayed Thermal Barrier Coatings: Materials, Processes, and Properties, Journal of Thermal Spray Technology 26, 992–1010 (2017).
H.F. Chen, C. Zhang, Y.C. Liu, P. Song, W.-X. Li, G. Yang, B. Liu, Recent progress in thermal/environmental barrier coatings and their corrosion resistance, Rare Metals 39(8), 498-512 (2020).
D. Zhu, R.A. Miller, Thermal Conductivity and Sintering Behavior of Advanced Thermal Barrier Coatings, Ceramic Engineering and Science Proceedings 23(4), 457–468 (2002).
M. Maloney, US Patents. 6 177 200 and 6 231 991, 2001.
H. Lehmann, D. Pitzer, G. Pracht, R. Vassen, D. Stőver, Thermal conductivity and thermal expansion coefficients of the lanthanum rare-earth-element zirconate system, Journal of the American Ceramic Society 86(8), 1338-1344 (2003).
N.P. Padture, P.G. Klemens, Low Thermal Conductivity in Garnets, Journal of the American Ceramic Society 80(4), 1018-1020 (1997).
O. Sudre, J. Cheung, D. Marshall, P. Morgan, C.G. Levi, “Thermal Insulation Coatings of LaPO4”, in the 25th Annual International Conference on Composites, Advanced Ceramics, Materials and Structures: B, Cocoa Beach of Florida, Westerville, OH, USA, January 2001, Mrityunjay Singh and Todd Jessen. American Ceramic Society, 2001, pp. 367–74.
D.R. Clarke, S.R. Phillpot, Thermal Barrier Coating Materials, Materials today 8(6), 22–29 (2005).
W. Pan, S.R. Phillpot, C. Wan, A. Chernatynskiy, Z. Qu, Low Thermal Conductivity Oxides, MRS Bulletin 37(10), 917– 922 (2012).
X.Q. Cao, Application of Rare-Earths in Thermal Barrier Coating Materials, Journal of Materials Science Technology 23(1), 15-35 (2007).
D. Zhu, D.S. Fox, N.P. Bansal, and R.A. Miller, Advanced Oxide Material Systems for 1650 °C Thermal and Environmental Barrier Coating Applications, Washington: NASA/TM-2004–213219, National Aeronautics and Space Administration, 2004.
L. Guo, H. Guo, H. Peng, S. Gong, Thermophysical properties of Yb2O3 doped Gd2Zr2O7 and thermal cycling durability of (Gd0.9Yb0.1)2Zr2O7/YSZ thermal barrier coatings, Journal of the European Ceramic Society 34(5), 1255–1263 (2014).
C. Wan, Z. Qu, A. Du, W. Pan, Influence of B Site Substituent Ti on the Structure and Thermophysical Properties of A2B2O7-Type Pyrochlore Gd2Zr2O7, Acta Materialia 57(16), 4782-4789 (2009).
W. Ma, X. Li, Y. Yin, H. Dong, Y. Bai, J. Liu, D. Nan, J. Wang, The mechanical and thermophysical properties of La2(Zr1–xCex)2O7 ceramics, Journal of Alloys and Compounds 660, 85-92 (2016).
J. Wang, F. Xu, R.J. Wheatley, K. Choy, N.C. Neate, X. Hou, Investigation of La3+ Doped Yb2Sn2O7 as new thermal barrier materials, Materials & Design 85, 423–430 (2015).
R. Vaßen, X. Cao, F. Tietz, D. Basu, D. Stöver, Zirconates as new materials for thermal
W. Ma, D. Mack, R. Vaßen, D. Stöver, Perovskite-Type Strontium Zirconate as a New Material for Thermal Barrier Coatings, Journal of the American Ceramic Society 91(8) 2630–2635 (2008).
W. Ma, M.O. Jarligo, D.E. Mack, D. Pitzer, J. Malzbender, R. Vaßen, D. Stöver, New Generation Perovskite Thermal Barrier Coating Materials, Journal of the Thermal Spray Technology 17(5), 831-837 (2008).
W. Ma, D. Mack, J. Malzbender, R. Vaßen, D. Stöver, Yb2O3 and Gd2O3 doped strontium zirconate for thermal barrier coatings, Journal of the European Ceramic Society 28(16), 3071–3081 (2008).
J. Yuan, J. Sun, J. Wang, H. Zhang, S. Dong, J. Jiang, L. Deng, X. Zhou, X. Cao, SrCeO3 as a novel thermal barrier coating candidate for high–temperature applications, Journal of Alloys and Compounds 740, 519–528 (2018).
R.A. Shishkin, Structure and thermal properties of SrCe1-xSnxO3 (x=0.1…0.5) as a promising thermal barrier coating, Ceramics International 49(19), 31539-31548 (2023).
R.A. Shishkin, O.G. Reznitskikh, A.Yu. Suntsov, V.L. Kozhevnikov, Properties of SrCe0.95M0.05O3 (M = La, Pr, Y, Sn) thermal barrier materials, Ceramics International 48(18), 27003-27010 (2022).
H. Zeya, L. Haoran, W. Chang-An, Synthesis and characterization of LaMgAl11O19 as thermal barrier coatings material, Key Engineering Materials 697, 390–394 (2016).
L. Haoran, W. Chang-An, Z. Chenguang, T. Shuyan, Thermo-physical properties of rare-earth hexaaluminates LnMgAl11O19 (Ln: La, Pr, Nd, Sm, Eu and Gd) magnetoplumbite for advanced thermal barrier coatings, Journal of the European Ceramic Society 35(4), 1297–1306 (2015).
X. Xie, H. Guo, S. Gong, H. Xu, Lanthanum–Titanium–Aluminum Oxide: A Novel Thermal Barrier Coating Material for Applications at 1300°C, Journal of the European Ceramic Society 31(9), 1677-1683 (2011).
L. Chen, J. Feng, Research progress of thermomechanical properties of rare-earth tantalates RE3TaO7 and RETa3O9 ceramics, Advanced Ceramics. 40(6), 367−397 (2019).
J. Wang, X.Y. Chong, R. Zhou, J. Feng, Microstructure and thermal properties of RETaO4 (RE = Nd, Eu, Gd, Dy, Er, Yb, Lu) as promising thermal barrier coating materials, Scripta Materialia 126, 24–28 (2017).
L. Chen, P. Wu, P. Song, J. Feng, Potential thermal barrier coating materials: RE3NbO7 (RE = La, Nd, Sm, Eu, Gd, Dy) ceramics, Journal of the American Ceramic Society 101(10), 4503–4508 (2018).
F. Wu, P. Wu, Y. Zhou, X. Chong, J. Feng, The thermo-mechanical properties and ferroelastic phase transition of RENbO4 (RE = Y, La, Nd, Sm, Gd, Dy, Yb) ceramics, Journal of the American Ceramic Society 103(4), 2727–2740 (2019).
W. Sang, H. Zhang, H.-h. Chen, Y. Guo, J. Ling, X.-g. Chen, W. Xie, Preparation and thermophysical properties of Lu3TaO7, Ceramics International 48(11), 15848-15854 (2022).
P. Zhang, Y. Feng, Y. Li, W. Pan, P.-an Zong, M. Huang, Y. Han, Z. Yang, H. Chen, Q. Gong, Ch. Wan,
Thermal and mechanical properties of ferroelastic RENbO4 (RE = Nd, Sm, Gd, Dy, Er, Yb) for thermal barrier coatings, Scripta Materialia 180, 51–56 (2020).
L. Chen, J. Guo, Y. Zhu, M. Hu, J. Feng, Features of crystal structures and thermo-mechanical properties of weberites RE3NbO7 (RE = La, Nd, Sm, Eu, Gd) ceramics, Journal of the American Ceramic Society 104(1), 404–412 (2020).
C.M. Rost, E. Sachet, T. Borman, A. Moballegh, E.C. Dickey, D. Hou, J.L. Jones, S. Curtarolo, J.-P. Maria, Entropy-stabilized oxides, Nature Communications 6, 8485 (2015).
L. Chen, B. Li, J. Guo, Y. Zhu, J. Feng, High-entropy perovskite RETa3O9 ceramics for high-temperature environmental/thermal barrier coatings, Journal of Advanced Ceramics 11, 556–569 (2022).
D. Liu, B. Shi, L. Geng, Y. Wang, B. Xu, Y. Chen, High-entropy rare-earth zirconate ceramics with low thermal conductivity for advanced thermal-barrier coatings, Journal of Advanced Ceramics 11, 961–973 (2022).
K. Ren, Q. Wang, G. Shao, X. Zhao, Y. Wang, Multicomponent high-entropy zirconates with comprehensive properties for advanced thermal barrier coating, Scripta Materialia 178, 382–386 (2020).
Z. Zhao, H. Xiang, F.Z. Dai, Z. Peng, Y. Zhou, (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)2Zr2O7: A novel high-entropy ceramic with low thermal conductivity and sluggish grain growth rate, Journal of Materials Science & Technology 35(11), 2647–2651 (2019).
F. Li, L. Zhou, J.X. Liu, Y. Liang, G.-J. Zhang, High-entropy pyrochlores with low thermal conductivity for thermal barrier coating materials, Journal of Advanced Ceramics 8, 576–582 (2019).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Journal of Aeronautics and Space Technologies

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
The manuscript with title and authors is being submitted for publication in Journal of Aeronautics and Space Technologies. This article or a major portion of it was not published, not accepted and not submitted for publication elsewhere. If accepted for publication, I hereby grant the unlimited and all copyright privileges to Journal of Aeronautics and Space Technologies.
I declare that I am the responsible writer on behalf of all authors.