Control of a Thermoelectric Cooling Module by Metaheuristic Optimization Algorithms
Keywords:
Transfer function, modelling, coronavirus herd immunity, atomic search optimization, thermoelectric moduleAbstract
In this study, the proportional-integral-derivative (PID) controller of a sample thermoelectric cooler (TEC) system model is optimized using four different metaheuristic optimization algorithms. For this aim, the classical PID and the metaheuristic optimization algorithms as Coronavirus Herd Immunity Optimization (CHIO), Atomic Search Optimization (ASO), Artificial Bee Colony (ABC) and Particle Swarm Optimization (PSO) were used for control of a TEC system. The settling time and maximum overshoot criteria are used to compare performances of the optimized controllers. -20°C is the desired temperature for the cold side of this thermoelectric module. Since TEC systems require quick cooling, CHIO-PID performs the best because it is the first to reach the set temperature of -20 ˚C in 42 seconds at the 1% band limit.
Downloads
References
Champier, D. (2017). Thermoelectric generators: A review of applications. Energy Conversion and Management, 140, 167-181.
Mahan, G. D., & Sofo, J. O. (1996). The best thermoelectric. Proceedings of the National Academy of Sciences, 93(15), 7436-7439.
Lin, L., Zhang, Y. F., Liu, H. B., Meng, J. H., Chen, W. H., & Wang, X. D. (2019). A new configuration design of thermoelectric cooler driven by thermoelectric generator. Applied Thermal Engineering, 160, 114087.
Qiu, C., & Shi, W. (2020). Comprehensive modeling for optimized design of a thermoelectric cooler with non-constant cross-section: Theoretical considerations. Applied Thermal Engineering, 176, 115384.
Zhao, D., & Tan, G. (2014). A review of thermoelectric cooling: materials, modeling and applications. Applied thermal engineering, 66(1-2), 15-24.
Dresselhaus, M. S., Chen, G., Tang, M. Y., Yang, R. G., Lee, H., Wang, D. Z. & Gogna, P. (2007). New directions for low‐dimensional thermoelectric materials. Advanced materials, 19(8), 1043-1053.
Singh, V. K., Sisodia, S. S., Patel, A., Shah, T., Das, P., Patel, R. N., & Bhavsar, R. R. (2023). Thermoelectric cooler (TEC) based thermal control system for space applications: Numerical study. Applied Thermal Engineering, 224, 120101.
Caroff, T., Sarno, C., Hodot, R., Brignone, M., & Simon, J. (2015). New optimization strategy of thermoelectric coolers applied to automotive and avionic applications. Materials Today: Proceedings, 2(2), 751-760.
Guo, D., Sheng, Q., Dou, X., Wang, Z., Xie, L., & Yang, B. (2020). Application of thermoelectric cooler in temperature control system of space science experiment. Applied Thermal Engineering, 168, 114888.
Pourkiaei, S. M., Ahmadi, M. H., Sadeghzadeh, M., Moosavi, S., Pourfayaz, F., Chen, L., ... & Kumar, R. (2019). Thermoelectric cooler and thermoelectric generator devices: A review of present and potential applications, modeling and materials. Energy, 186, 115849.
Huang, B. J., & Duang, C. L. (2000). System dynamic model and temperature control of a thermoelectric cooler. International journal of refrigeration, 23(3), 197-207.
Lineykin, S., & Ben-Yaakov, S. (2007). Modeling and analysis of thermoelectric modules. IEEE Transactions on Industry Applications, 43(2), 505-512.
Chavez, J. A., Ortega, J. A., Salazar, J., Turo, A. A. T. A., & Garcia, M. J. (2000, May). SPICE model of thermoelectric elements including thermal effects. In Proceedings of the 17th IEEE Instrumentation and Measurement Technology Conference [Cat. No. 00CH37066] (Vol. 2, pp. 1019-1023). IEEE.
Ventura, J., Moita, T. H., & dos Santos, M. B. (2016, July). Characterization of temperature sensors using Peltier cells. In 2016 IEEE 21st International Mixed-Signal Testing Workshop (IMSTW) (pp. 1-6). IEEE.
Kungwalrut, P., Numsomran, A., Chaiyasith, P., Chaoraingern, J., & Tipsuwanporn, V. (2017, October). A PI λ D μ controller design for peltier-thermoelectric cooling system. In 2017 17th International Conference on Control, Automation and Systems (ICCAS) (pp. 766-770). IEEE.
Song, S. J., & Wang, J. J. (2012). Dynamic model of thermoelectric cooler and temperature control based on adaptive fuzzy-PID. In Applied Mechanics and Materials (Vol. 130, pp. 1919-1924). Trans Tech Publications Ltd.
Cheng, Y. H., & Shih, C. (2006). Maximizing the cooling capacity and COP of two-stage thermoelectric coolers through genetic algorithm. Applied Thermal Engineering, 26(8-9), 937-947.
Belovski, I., Sotirov, S., Sotirov, N., & Alexandrov, A. (2016, May). Prediction of the parameters of the thermoelectric cooling systems based on Peltier elements with neural network. In 2016 19th International Symposium on Electrical Apparatus and Technologies (SIELA) (pp. 1-4). IEEE.
Yusuf, A., Koç, T., Arikuşu, Y. S., Tiryaki, H., Bayhan, N., & Ballikaya, S. (2022). Modeling of a thermoelectric cooler system, design and optimization of the system’s controller. Sādhanā, 47(3), 182.
Almodfer, R., Zayed, M. E., Abd Elaziz, M., Aboelmaaref, M. M., Mudhsh, M., & Elsheikh, A. H. (2022). Modeling of a solar-powered thermoelectric air-conditioning system using a random vector functional link network integrated with jellyfish search algorithm. Case Studies in Thermal Engineering, 31, 101797.
Mohamed, M. S., Hassan, M. G., & Aly, A. A. (2018). An intelligent robust fuzzy temperature control of a thermoelectric cooler. Int. J. Appl. Eng. Res., 13(1), 1-7.
Kürkçü, B., & Kasnakoğlu, C. (2018). Robust temperature control of a thermoelectric cooler via μ-synthesis. Journal of Electronic Materials, 47(8), 4421-4429.
Sezer K.S and Bayhan N., (2021), Comparison of Metaheuristic Algorithm Performances for Optimization of Fractional Order PID Controllers Applied to Gas Turbine Power Plant, Journal of Aeronautics and Space Technologies, Vol:14, No:2,
pp: 209-219.
Kiam Heong Ang, Gregory Chong, “PID Control System Analysis, Design, and Technology”, Ieee Transactions On Control Systems Technology, 13, No. 4, July 2005.
R.C. Eberhart, J. Kennedy, “A Discrete Binary Version Of The Particle Swarm Algorithm”, 0-78034053- 1997 IEEE.
D. Karaboga, B.Akay, “A comparative study of Artificial Bee Colony algorithm”, Applied Mathematics and Computation, 214 (2009) 108-132.
S. S, Bhambu P., "Artificial Bee Colony Algorithm: A Survey," Int. J. Comput. Appl., 149 (2016)11–9. DOI:10.5120/ijca2016911384.
Oliva D, Cuevas E, Pajares G., 2014, "Parameter identification of solar cells using artificial bee colony optimization," Energy, Vol. 72, pp. 93–102. DOI:10.1016/j.energy.2014.05.011.
Al-Betar, M. A., Alyasseri, Z. A. A., Awadallah, M. A., and Abu Doush, I. (2021). Coronavirus herd immunity optimizer (CHIO). Neural Computing and Applications, 33, 5011-5042.
T. Jefferson, R. Foxlee ve Del Mar C, L.Dooley, E. Ferroni, Hewak B,Prabhala A, Nair S ve A. Rivetti, (2011). Physical interventions to interrupt or reduce the spread of respiratory viruses. Cochrane database of systematic reviews, Issue 7.
Zhao, W., Wang, L., & Zhang, Z. (2019). Atom search optimization and its application to solve a hydrogeologic parameter estimation problem. Knowledge-Based Systems, 163, 283-304.
J.G. Ziegler and N.B. Nichols and N.Y. Rochester, “Optimum settigs for automatic controllers”, Transactions of the American Society of Mechanical Engineers, vol. 64, pp. 759-768, 1942.
Arıkuşu Y.S. and Bayhan N., (2021),“Otomatik Gerilim Regülatörü için Koronavirüs Sürü Bağışıklığı Optimizasyonu Tabanlı PID Kontrolör Tasarımı” TOK 2021, 2-4 Eylül 2021, pp:177-182.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Journal of Aeronautics and Space Technologies

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
The manuscript with title and authors is being submitted for publication in Journal of Aeronautics and Space Technologies. This article or a major portion of it was not published, not accepted and not submitted for publication elsewhere. If accepted for publication, I hereby grant the unlimited and all copyright privileges to Journal of Aeronautics and Space Technologies.
I declare that I am the responsible writer on behalf of all authors.