A Review on Post – Buckling Behaviors of Composites: Crippling Phenomenon
Keywords:
Post – buckling, crippling, composite, one – edge – free (OEF), no – edge – free (NEF)Abstract
Buckling phenomenon is a common failure mode for composite materials under the effect of compressive loading which is mainly investigated in two stages as pre – buckling and post – buckling. At the pre – buckling phase, the deformations take place temporarily in elastic range. However, load carrying capacity of a member can be increased by regarding the post – buckling process. Therefore, it is important to determine the final and maximum load carrying ability of the structure. Since, at the end of the post – buckling, the body cannot carry load and crippling failure takes place. In this review article, crippling behavior of the composite structures is investigated. After describing the crippling phenomenon, this study mainly investigates both experimental and theoretical points of views. In this scope, affecting parameters such as stacking sequence, geometrical properties and boundary conditions are determined. Then, the improved theoretical approaches are stated. The compatibilities of the test results are assessed with theoretical studies.
Downloads
References
C. Kassapoglou, Design and analysis of composite structures: With applications to aerospace structures, 1st ed. West Sussex: John Wiley & Sons, 2010, pp. 194-207.
Z. Wang, X. Chen, X. Li, P. Zou, J. Yang, and X. Bi, “An improved engineering method for bearing capacity calculation of stiffened curved composite panels,” in Journal of Physics: Conference Series, 2022, 2338(1), 012005.
E. E. Spier, Stability of graphite/epoxy structures with arbitrary symmetrical laminates, Exp. Mech., 18(11), 401–408, (1978).
E. E. Spier, “On Experimental versus Theoretical Incipient Buckling of Narrow Graphite/Epoxy Plates in Compression,” in 21st Structures, Structural Dynamics, and Materials Conference, San Diego, California, 1980, pp. 187–193.
H. Liu, B. G. Falzon, and J. P. Dear, An experimental and numerical study on the crush behaviour of hybrid unidirectional/woven carbon-fibre reinforced composite laminates, Int. J. Mech. Sci., 164, 105160, (2019).
B. Wu, A. Pagani, M. Filippi, W. Q. Chen, and E. Carrera, Accurate stress fields of post-buckled laminated composite beams accounting for various kinematics, Int. J. Non. Linear. Mech., 111, 60–71, (2019).
C. Wu, L.-T. Zhang, L. Tam, L. Yan, and L. He, Effect of bearing length on web crippling behavior of pultruded GFRP channel section, Compos. Struct., 253, 112810, (2020).
Y. Xu, H. Chen, and X. Wang, Buckling analysis and configuration optimum design of grid-stiffened composite panels, AIAA J., 58(8), 3653–3664, (2020).
S. Huang and P. Qiao, Buckling of partially-compressed laminated composite plates, Thin-Walled Struct., 169, 108385, (2021).
Z. Wang, B. Wang, R. Bao, X. Chen, Q. Liang, and F. Yu, “Buckling and Post-buckling Analysis of Composite Hat Stiffened Panels under Axial Compression Loads,” in Journal of Physics: Conference Series, International Conference on Aerospace and Control Engineering, Guangzhou, China, 2023, pp. 012013.
M. Heidari-Rarani, S. S. Khalkhali-Sharifi, and M. M. Shokrieh, Effect of ply stacking sequence on buckling behavior of E-glass/epoxy laminated composites, Comput. Mater. Sci., 89, 89–96, (2014).
G. Moors, C. Kassapoglou, S. F. M. de Almeida, and C. A. E. Ferreira, Weight trades in the design of a composite wing box: effect of various design choices, CEAS Aeronaut. J., 10, 403–417, (2019).
J. H. Kweon, Crippling analysis of composite stringers based on complete unloading method, Comput. Struct., 80, 2167–2175, (2002).
W. F. Ragheb, Local buckling analysis of pultruded FRP structural shapes subjected to eccentric compression, Thin-Walled Struct., 48, 709–717,(2010).
R. N. Kolanu, G. Raju, and M. Ramji, A unified numerical approach for the simulation of intra and inter laminar damage evolution in stiffened CFRP panels under compression, Compos. Part B, 190, 107931, (2020).
S. Nadeem Masood, S. R. Viswamurthy, and K. M. Gaddikeri, Composites airframe panel design for post-buckling – An experimental investigation, Compos. Struct., 241, 112104, (2020).
P. Rozylo, H. Debski, P. Wysmulski, and K. Falkowicz, Numerical and experimental failure analysis of thin-walled composite columns with a top-hat cross section under axial compression, Compos. Struct., 204, 207–216, (2018).
P. Wysmulski, H. Debski, and K. Falkowicz, Stability analysis of laminate profiles under eccentric load, Compos. Struct., 238, 111944, (2020).
L. Almeida-Fernandes, J. R. Correia, and N. Silvestre, Effect of fibre layup and bearing length on the web-crippling behaviour of pultruded GFRP profiles, Compos. Struct., 267, 113884, (2021).
T. Kubiak, Static and Dynamic Buckling of Thin-Walled Plate Structures, 1st ed. Heidelberg New York Dordrecht London: Springer Cham, 2013, pp.1-25.
D. C. T. Cardoso and B. S. Togashi, Experimental investigation on the flexural-torsional buckling behavior of pultruded GFRP angle columns, Thin-Walled Struct., 125, 269–280, (2018).
Z. Huang, D. Li, B. Uy, H. T. Thai, and C. Hou, Local and post-local buckling of fabricated high-strength steel and composite columns, J. Constr. Steel Res., 154, 235–249, (2019).
P. Rozylo, M. Ferdynus, H. Debski, and S. Samborski, Progressive Failure Analysis of Thin-Walled Composite Structures Verified Experimentally, Materials, 13(5), 1138, (2020).
P. Sengsri and S. Kaewunruen, Local Failure Modes and Critical Buckling Loads of a Meta-Functional Auxetic Sandwich Core for Composite Bridge Bearing Applications, Applied Sciences, 11(22), 10844, (2021).
C. Zhang and K. T. Tan, Experimental and numerical investigation of large scale effect on buckling and post-buckling behavior of tubular structures, Thin-Walled Struct., 186, 110708, (2023).
Y. Liu, H. T. Zhang, T. Tafsirojjaman, A. Ur Rahman Dogar, Q. R. Yue, and A. Manalo, Compressive behaviour and prediction model for short and slender FRP-confined GFRP bars, Constr. Build. Mater., 376, 131059, (2023).
E. E. Spier and G. Wang, On Buckling of Unidirectional Boron/Aluminum Stiffeners - A Caution to Designers, J. Compos. Mater., 9, 347–360, (1975).
E. E. Spier, “Crippling/Column Buckling Analysis and Test of Graphite/Epoxy-Stiffened Panels,” in 16th Structural Dynamics, and Materials Conference, New York, 1975, pp.1-16.
E. Spier and F. Klouman, Empirical Crippling Analysis of Graphite/Epoxy Laminated Plates, ASTM Spec. Tech. Publ., 617, pp. 255–271, (1977).
E. E. Spier, “Postbuckling Fatigue Behavior of Graphite-Epoxy Stiffeners,” in 23rd Structures, Structural Dynamics and Materials Conference, 1982, pp. 511–527.
T. Rahman and E. L. Jansen, Finite element based coupled mode initial post-buckling analysis of a composite cylindrical shell, Thin-Walled Struct., 48, pp. 25–32, 2010.
R. K. Gupta, J. Babu, G. R. Janardhan, and G. V. Rao, Post-buckling analysis of composite beams: Simple and accurate closed-form expressions, Compos. Struct., 92, 1947–1956, (2010).
S. C. White, P. M. Weaver, and K. C. Wu, Post-buckling analyses of variable-stiffness composite cylinders in axial compression, Compos. Struct., 123, 190–203, (2015).
X. M. Wang, W. Cao, C. H. Deng, P. Y. Wang, and Z. F. Yue, Experimental and numerical analysis for the post-buckling behavior of stiffened composite panels with impact damage, Compos. Struct., 133, 840–846, (2015).
H. Debski, A. Teter, T. Kubiak, and S. Samborski, Local buckling, post-buckling and collapse of thin-walled channel section composite columns subjected to quasi-static compression, Compos. Struct., 136, 593–601, (2016).
A. Pagani and E. Carrera, Large-deflection and post-buckling analyses of laminated composite beams by Carrera Unified Formulation, Compos. Struct., 70, 40–52, (2017).
Ş. D. Akbaş, Post-buckling analysis of a fiber reinforced composite beam with crack, Eng. Fract. Mech., 212, 70–80, (2019).
D. L. Bonanni, E. R. Johnson, and J. H. Starnes Jr, Local crippling of thin-walled graphite-epoxy stiffeners, AIAA J., 29(11), 1951–1959, (1991).
L. Almeida-Fernandes, N. Silvestre, and J. R. Correia, Fracture toughness-based models for web-crippling of pultruded GFRP profiles, Compos. Part B Eng., 230, 109541, (2022).
P. Różyło and H. Dębski, The Influence of Composite Lay-Up on the Stability of a Structure with Closed Section, Adv. Sci. Technol. Res. J., 16, 260–265, (2022).
B. Czajka and P. Różyło, The influence of Composite Lay-Up and the Shape of the Closed Section on the Stability of the Structure, Adv. Sci. Technol. Res. J., 16, 216–224, (2022).
K. Falkowicz and P. S. Valvo, Influence of Composite Lay-Up on the Stability of Channel-Section Profiles Weakened by Cut-Outs – A Numerical Investigation, Adv. Sci. Technol. Res. J., 17, 108–115, (2023).
P. Rozylo, Failure phenomenon of compressed thin-walled composite columns with top-hat cross-section for three laminate lay-ups, Compos. Struct., 304, 116381, (2023).
P. J. A. Minguet, “Postbuckling behavior and crippling failure of laminated composite stiffeners,” in American Institute of Aeronautics and Astronautics, 1994, 1, pp. 458–465.
E. G. Yıldırım and R. Ünal, “The Effects of Thickness and Stacking Sequence on Crippling Phenomenon for Laminated Composite Structures,” in Proceedings of 10th International Conference on Recent Advances in Air and Space Technologies, RAST 2023, İstanbul, 2023, pp. 1–4.
D. Wang and M. M. Abdalla, “Global and local buckling analysis of grid-stiffened composite panels,” Compos. Struct., 119, 767–776, (2015).
T. Yao and M. Fujikubo, Buckling/Plastic Collapse Behavior and Strength of Stiffened Plates. 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States, 2016.
S. C. M. D’Aguiar and E. P. Junior, Local buckling and post-critical behavior of thin-walled composite channel section columns, Lat. Am. J. Solids Struct., 15(7), (2018).
P. Gatheeshgar, K. Poologanathan, S. Gunalan, I. Shyha, K. D. Tsavdaridis, and M. Corradi, Optimal design of cold-formed steel lipped channel beams: Combined bending, shear, and web crippling, Structures, 28, 825–836, (2020).
H. T. Nguyen and S. E. Kim, Buckling of composite columns of lipped-channel and hat sections with web stiffener, Thin-Walled Struct., 47, 1149–1160, (2009).
Y. B. Sudhirsastry, Y. Krishna, and P. R. Budarapu, Parametric studies on buckling of thin walled channel beams, Comput. Mater. Sci., 96, 416–424, (2015).
H. Mousavi, M. Azhari, M. M. Saadatpour, and S. Sarrami-Foroushani, Application of improved element-free Galerkin combining with finite strip method for buckling analysis of channel-section beams with openings, Eng. Comput., 38, 739–755, (2020).
P. Jasion, A. Pawlak, and P. Paczos, Buckling and post-buckling behaviour of selected cold-formed C-beams with atypical flanges, Eng. Struct., 244, 112693, (2021).
N. Staszak, T. Gajewski, and T. Garbowski, Effective Stiffness of Thin-Walled Beams with Local Imperfections, Materials, 15(21), 7665, (2022).
X. Yao, J. Yang, and Y. Guo, Study on Restoring Force Model of Cold-Formed Thin-Walled Steel Lipped Channel Beam-Columns under Cyclic Load, Buildings, 13(1), 114, (2023).
L. Gan, L. Ye, and Y. Mai, Simulations of mechanical performance of pultruded I-beams with various flange-web conjunctions, Compos. Part B, 30, 423–429, (1999).
M. Alhawamdeh et al., Review on Local Buckling of Hollow Box FRP Profiles in Civil Structural Applications, Polymers, 13(23), 4159, (2021).
W. Oefner and H. Otto, A composite radius filler for filling a void space in a skin - stiffener transition assembly, EP 3 081 370 B1, 2016. Available: https://data.epo.org/publication-server/document?iDocId=5176239&iFormat=0. [Accessed: Sept 12, 2021].
Z. Sápi, R. Butler, and A. Rhead, Filler materials in composite out-of-plane joints – A review, Compos. Struct., 207, 787–800, (2019).
X. Wang, S. Li, and F. Xie, Experiment study of manufacture and performance evaluation in T-stiffened skins with different curvature radii, Compos. Struct., 258, 113352, (2021).
G. Luo, C. Chai, J. Liu, Y. Xiao, Y. Chen, and F. Xu, Investigations on the Mechanical Properties of Composite T-Joints with Defects under Bending Loading, Sustainability, 14(24), 16609, (2022).
S. Heimbs, M. Jürgens, C. Breu, G. Ganzenmüller, and J. Wolfrum, “Investigation and Improvement of Composite T-Joints with Metallic Arrow-Pin Reinforcement,” in Conference Proceedings of the Society for Experimental Mechanics Series, Cham., 2017, pp. 33–40.
S. Abbasi, R. B. Ladani, C. H. Wang, and A. P. Mouritz, Improving the structural properties of composite T-joints by z-weaving of continuous metallic filaments, Compos. Struct., 260, p. 113509, (2021).
S. E. Krajca, J. L. Sweetin, C. G. Harris, W. T. Kline, and G. Z. Forston, Variable-radius laminated radius filler and system and method for manufacturing same, Washington, DC: U.S. Patent and Trademark Office, 9327470 B1, 2016.
Mccarville Douglas A, Birkland Jordan O, Tidwell Ryan S, and Guzman Juan C, Radius Filler Containing Vertical Ply Stacks and Thin Plies, Unified Patents, Washington, DC: U.S. Patent and Trademark Office, 9463864 B1, 2016.
Y. Wang, C. Feng, C. Santiuste, Z. Zhao, and J. Yang, Buckling and postbuckling of dielectric composite beam reinforced with Graphene Platelets (GPLs), Aerosp. Sci. Technol., 91, pp. 208–218, (2019).
K. Bharti, L. A. Kumaraswamidhas, and R. R. Das, Detailed investigation of adhesive fillet tubular T-joint of laminated FRP composite tube under axial compressive load, Weld. World, 64, 1279–1292, (2020).
Y. Fu, J. Zhang, and L. Zhao, Strength prediction of composite π joint under bending load and study of geometric and material variations effects, J. Compos. Mater., 47, 1029–1038, (2012).
J. L. Sandoval Murillo, G. C. Ganzenmüller, S. Heimbs, and M. May, “Design parameter study of a CFRP T-joint under overpressure conditions due to ballistic impact,” in ECCM 2016 - Proceeding of the 17th European Conference on Composite Materials, Munich, Germany, 2016, pp. 1–7.
M. Manoj Prabhakar, N. Rajini, Nadir Ayrilmis, K. Mayandi, Suchart Siengchin, K. Senthilkumar, S. Karthikeyan, Sikiru O. Ismail, An overview of burst, buckling, durability and corrosion analysis of lightweight FRP composite pipes and their applicability, Compos. Struct., 230, 111419, (2019).
J. Justo, J. Reinoso, and A. Blázquez, Experimental failure investigation of pull-off tests of single T-stiffened composite specimens, Compos. Struct., 177, 13–27, (2017).
X. Li, Z. Zhu, Y. Li, and Z. Hu, Design and Mechanical Analysis of a Composite T-Type Connection Structure for Marine Structures, Polish Marit. Res., 27, 145–157, (2020).
R. Masoudi Nejad, D. Ghahremani Moghadam, M. Hadi, P. Zamani, and F. Berto, An investigation on static and fatigue life evaluation of grooved adhesively bonded T-joints, Structures, 35, 340–349, (2022).
S. K. Panigrahi and B. Pradhan, Delamination damage analyses of FRP composite spar wingskin joints with modified elliptical adhesive load coupler profile, Appl. Compos. Mater., 15, 189–205, (2008).
L. D. C. Ramalho, I. J. Sánchez-Arce, D. C. Gonçalves, J. Belinha, and R. D. S. G. Campilho, Numerical analysis of the dynamic behaviour of adhesive joints: A review, Int. J. Adhes. Adhes., 118, 103219, (2022).
D. T. Borowicz and L. C. Bank, Behavior of pultruded fiber-reinforced polymer beams subjected to concentrated loads in the plane of the web, J. Compos. Constr., 15, 229–238, (2011).
C. Wu and Y. Bai, Web crippling behaviour of pultruded glass fibre reinforced polymer sections, Compos. Struct., 108, 789–800, (2014).
Y. Chen and C. Wang, Test on pultruded GFRP I-section under web crippling, Compos. Part B, 77, 27–37, (2015).
Y. Chen and C. Wang, Web crippling behavior of pultruded GFRP rectangular hollow sections, Compos. Part B, 77, 112–121, (2015).
G. B. dos Santos and L. Gardner, Design recommendations for stainless steel I-sections under concentrated transverse loading, Eng. Struct., 204, 1–11, (2020).
C. Wu, Y. Bai, and X.-L. Zhao, Improved bearing capacities of pultruded glass fibre reinforced polymer square hollow sections strengthened by thin-walled steel or CFRP, Thin-Walled Struct., 89, 67–75, (2015).
L. A. Fernandes, J. Gonilha, J. R. Correia, N. Silvestre, and F. Nunes, Web-crippling of GFRP pultruded profiles. Part 1: Experimental study, Compos. Struct., 120, 565–577, (2015).
L. A. Fernandes, F. Nunes, N. Silvestre, J. R. Correia, and J. Gonilha, Web-crippling of GFRP pultruded profiles. Part 2: Numerical analysis and design, Compos. Struct., 120, 578–590, (2015).
X. Chen, Y. Chen, K. He, and F. P. Galarza, Experimental Investigations on Web Crippling Failure Modes of Aluminum Hollow and Composite Tubes, Struct. Durab. Heal. Monit., 12, 299–322, (2018).
C. Wu, L.-T. Zhang, Y. Bai, and X.-L. Zhao, Web crippling behavior of pultruded GFRP channel sections under transverse bearing load, Compos. Struct., 209, 129–142, (2019).
H. Chagraoui, T. Lazghab, and M. Soula, Buckling optimization and post-buckling analysis of omega sub-stiffened composite panels using different cohesive interface properties, Thin-Walled Struct., 189, 110944, (2023).
P. Wysmulski, Non-linear analysis of the postbuckling behaviour of eccentrically compressed composite channel-section columns, Compos. Struct., 305, 116446, (2023).
S. A. M. Ghannadpour and M. Barekati, Post-buckling Response in Composite Plates under End-shortening Strain using Chebyshev Techniques, J. Aerosp. Sci. Technol., 12, 15–26, (2019).
E. Altunsaray and İ. Bayer, Buckling Analysis of Symmetrically Laminated Rectangular Thin Plates under Biaxial Compression, Tek. Dergi, 634, 11287–11314, (2021).
H. Altıntaş, Optimization of Buckling Behavior of Hybrid Composite Beam Under Axial Compression, İzmir Institute of Technology, 2021.
U. K. Cömert, Investigation of Buckling, Post-Buckling Behavior of Variable Stiffness Composite Plates, Middle East Technical University, 2022.
X. Zhou et al., Buckling Analysis on Resin Base Laminated Plate Reinforced with Uniform and Functional Gradient Distribution of Carbon Fiber in Thermal Environment, Polymers, 15(9), 2086, (2023).
Department of Defense Washıngton DC. Department of Defense Handbook Composite Materials Handbook, Polymer Matrix Composites, vol. 3F, 2002. Available: https://apps.dtic.mil/sti/citations/ADA426516. [Accessed: Jan 1, 2024]
E. F. Bruhn, Analysis and design of flight vehicle structures (1965th ed.). Ohio: TriState Offset, 1973, C6.1-C7.6.
M. C. Niu, Airframe Stress Analysis and Sizing (2nd Edition). Los Angeles, California: Hong Kong Conmilit Press Ltd., 1999, 394-450.
T. Kubiak, M. Urbaniak, and F. Kazmierczyk, The Influence of the Layer Arrangement on the Distortional Post-Buckling Behavior of Open Section Beams, Materials, 13(13), 3002, (2020).
S. K. Panda, T. R. Mahapatra, and V. R. Kar, “Nonlinear Finite Element Solution of Post-buckling Responses of FGM Panel Structure under Elevated Thermal Load and TD and TID Properties,” in MATEC Web of Conferences, Auckland, 2017, 109.
A. Rahmzadeh, M. S. Alam, and R. Tremblay, Analytical Prediction and Finite-Element Simulation of the Lateral Response of Rocking Steel Bridge Piers with Energy-Dissipating Steel Bars, J. Struct. Eng., 144(11), 04018210, (2018).
A. Hassan Ahmed Hassan and N. Kurgan, Modeling and Buckling Analysis of Rectangular Plates in ANSYS, Int. J. Eng. Appl. Sci., 11, 310–329, (2019).
M. Shahmardani, P. Ståhle, M. S. Islam, and S. Kao-Walter, Numerical Simulation of Buckling and Post-Buckling Behavior of a Central Notched Thin Aluminum Foil with Nonlinearity in Consideration, Metals, 10(5), 582, (2020).
D. K. Kim, I. Ban, B. Y. Poh, and S. C. Shin, A useful guide of effective mesh-size decision in predicting the ultimate strength of flat- and curved plates in compression, J. Ocean Eng. Sci., 8(4), 401–417, (2022).
S. Li and D. K. Kim, Ultimate strength characteristics of unstiffened cylindrical shell in axial compression, Ocean Eng., 243, 110253, (2022).
A. Prabowo, R. Ridwan, and T. Muttaqie, On the Resistance to Buckling Loads of Idealized Hull Structures: FE Analysis on Designed-Stiffened Plates, Designs, 6(3), 46, (2022).
W. Ma et al., Buckling Analysis of Thin-Walled Circular Shells under Local Axial Compression using Vector Form Intrinsic Finite Element Method, Metals, 13(3), 564, (2023).
T. Kubiak, Z. Kolakowski, J. Swiniarski, M. Urbaniak, and A. Gliszczynski, Local buckling and post-buckling of composite channel-section beams - Numerical and experimental investigations, Compos. Part B, 91, 176–188, (2016).
H. Debski, Numerical and experimental analysis of stability of thin-walled composite structures subjected to eccentric load, Arch. Civ. Mech. Eng., 19, 792–802, (2019).
T. M. Tu, L. K. Hoa, D. X. Hung, and L. T. Hai, Nonlinear buckling and post-buckling analysis of imperfect porous plates under mechanical loads, J. Sandw. Struct. Mater., 22, 1910–1930, (2020).
X. Xu, E. Carrera, H. Yang, E. Daneshkhah, and R. Augello, Evaluation of stiffeners effects on buckling and post-buckling of laminated panels, Aerosp. Sci. Technol., 123, 1070431, (2022).
R. J. Mania, A. Madeo, G. Zucco, and T. Kubiak, Imperfection sensitivity of post-buckling of FML channel section column, Thin-Walled Struct., 114, 32–38, (2017).
S. Li, D. K. Kim, and S. Benson, The influence of residual stress on the ultimate strength of longitudinally compressed stiffened panels, Ocean Eng., 231,108839, (2021).
S. Li, D. G. Georgiadis, D. K. Kim, and M. S. Samuelides, A comparison of geometric imperfection models for collapse analysis of ship-type stiffened plated grillages, Eng. Struct., 250, 113480, (2022).
A. Prato, M. S. M. Al-Saymaree, C. A. Featherston, and D. Kennedy, Buckling and post-buckling of thin-walled stiffened panels: modelling imperfections and joints, Thin-Walled Struct., 172, 108938, (2022).
K. Rzeszut, Post-Buckling Behaviour of Steel Structures with Different Types of Imperfections, Applied Sciences, 12(18), 9018, (2022).
N. Einafshar, M. Lezgy-Nazargah, and S. B. Beheshti-Aval, Buckling, post-buckling and geometrically nonlinear analysis of thin-walled beams using a hypothetical layered composite cross-sectional model, Acta Mech., 232, 2733–2750, (2021).
A. R. Pouladkhan, J. Emadi, and M. Safamehr, Numerical study of Buckling of thin plates, World Acad. Sci. Eng. Technol., 78, 152–157, (2011).
L. Boni, D. Fanteria, and A. Lanciotti, Post-buckling behaviour of flat stiffened composite panels: Experiments vs. analysis, Compos. Struct., 94, 3421–3433, (2012).
P. Wang, K. Augustyn, A. Gomez, S. Quiel, and M. Garlock, “Influence of boundary conditions on the shear post-buckling behavior of thin web plates,” in Proceedings of the Annual Stability Conference Structural Stability Research Council, St. Louis, 2019, pp. 1–19.
G. V. Krishna, V. Narayanamurthy, and C. Viswanath, Buckling behaviour of FRP strengthened cylindrical metallic shells with cut-outs, Compos. Struct., 300, 116176, (2022).
P. Wysmulski, H. Debski, and K. Falkowicz, Sensitivity of Compressed Composite Channel Columns to Eccentric Loading, Materials, 15(19), 6938, (2022).
H. Debski, T. Kubiak, and A. Teter, Experimental investigation of channel-section composite profiles’ behavior with various sequences of plies subjected to static compression, Thin-Walled Struct., 71, 147–154, (2013).
P. Wysmulski and H. Debski, Post-buckling and limit states of composite channel-section profiles under eccentric compression, Compos. Struct., 245, 112356, (2020).
A. Rostamijavanani, M. R. Ebrahimi, and S. Jahedi, Thermal Post-buckling Analysis of Laminated Composite Plates Embedded with Shape Memory Alloy Fibers Using Semi-analytical Finite Strip Method, J. Fail. Anal. Prev., 21, 290–301, (2020).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Journal of Aeronautics and Space Technologies

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
The manuscript with title and authors is being submitted for publication in Journal of Aeronautics and Space Technologies. This article or a major portion of it was not published, not accepted and not submitted for publication elsewhere. If accepted for publication, I hereby grant the unlimited and all copyright privileges to Journal of Aeronautics and Space Technologies.
I declare that I am the responsible writer on behalf of all authors.