MODEL PREDICTIVE KONTROL AND ROBUSTNESS TEST OF THE UNMANNED AERIAL VEHICLE (ZANKA-I) IN VARIOUS TURBULENCE

Authors

  • Harun Çelik
  • Tuğrul Oktay
  • İlke Türkmen

Keywords:

Unmanned Aerial Vehicle, Model Predictive Control, Turbulence Model, Robustness Test

Abstract

In this paper, the robust control system is designed by using Model Predictive Control for ZANKA-I which is an unmanned aerial vehicle, and its performance is analyzed. In order to design the control system, longitudinal and lateral stability of the vehicle are modeled and converted to longitudinal and lateral state-space model, respectively. Also, the effects of turbulence on longitudinal and lateral stabilityare parametrically modeled and numerically inserted into the state-space models. As a result of simulating the model, the robustness of control system is proved.

Downloads

Download data is not yet available.

References

[1] Austin, R. (2010). “Unmanned Aircraft Systems: UAVS Design, Development and Deployment” Wiley.
[2] Schwager, M., Julian, B.J., Angermann, M., Rus, D., (2011) “Eyes in the sky: Decentralized control for the deployment of robotic camera networks” Proceedings of the IEEE, 99(9), 1541-1561.
[3] Hoffmann, G.M., Waslander, S.L., Tomlin, C.J., (2006) “Distributed cooperative search using information-theoretic costs for particle filters, with quadrotor applications” In Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit, 21-24.
[4] Michael, N., Shen, S., Mohta, K., Mulgaonkar, Y., Kumar, V., Nagatani, K., Tadokoro, S., (2012) “Collaborative mapping of an earthquake‐damaged building via ground and aerial robots” Journal of Field Robotics, 29(5), 832-841.

[5] Hoffmann, G., Rajnarayan, D.G., Waslander, S.L., Dostal, D., Jang, J.S., Tomlin, C.J., (2004) “The Stanford testbed of autonomous rotorcraft for multi agent control (STARMAC)” In Digital Avionics Systems Conference, 2004. DASC 04, IEEE, Vol 2, pp. 12-E.
[6] How, J.P., Bethke, B., Frank, A., Dale, D., Vian, J., (2008), “Real-time indoor autonomous vehicle test environment” Control Systems, IEEE, 28(2), 51-64.
[7] Michael, N., Daniel Mellinger, Quentin Lindsey, and V. Kumar. 2010, “The GRASP multiple micro-UAV testbed” Robotics & Automation Magazine, IEEE, 17 (3):56–65.
[8] Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N., (2011) “Visual odometry and mapping for autonomous flight using an RGB-D camera” In International Symposium on Robotics Research (ISRR), pp. 1-16.
[9] Lupashin, S., Schollig, A., Hehn, M., & D'Andrea, R., (2011), “The Flying Machine Arena as of 2010.” In 2011 IEEE International Conference on Robotics and Automation,IEEE, 2970–2971.
[10] Meier, L., Tanskanen, P., Heng, L., Lee, G.H., Fraundorfer, F., Pollefeys, M. (2012),“PIXHAWK: A micro aerial vehicle design for autonomous flight using onboard computer vision.” Autonomous Robots,33 (1-2), 21–39.
[11] Alkowatly, M.T., Becerra, V.M., Holderbaum, W., (2014),“Bioinspired Autonomous Visual Vertical Control of a Quadrotor Unmanned Aerial Vehicle”, Journal of Guidance, Control, and Dynamics, 1-14.
[12] Albayrak, M., Arısoy, A., (2013), “Dört Rotorlu Hava Aracı İçin Gerçek Zamanda Yapay Sinir Ağları İle Kontrolör Tasarımı” Journal of Aeronautics & Space Technologies/Havacilik ve Uzay Teknolojileri Dergisi,6(2).
[13] Nodland, D., Zargarzadeh, H., Jagannathan, S., (2013),“Neural network-based optimal adaptive output feedback control of a helicopter UAV” IEEE Transactions on Neural Networks and Learning Systems, 24(7), 1061-1073.
[14] Gül, G., Arısoy, A., (2013), “Dört Rotorlu Hava Aracı İçin Gerçek Zamanda Bulanık Mantıkla Kontrolör Tasarımı” Journal of Aeronautics & Space Technologies/Havacilik ve Uzay Teknolojileri Dergisi, 6(2).
[15] Bouabdallah, S., Siegwart, R., (2007), “Full control of a quadrotor” In Intelligent robots and systems,IROS 2007, IEEE/RSJ international conference on, 153-158.
[16] Azinheira, J.R., Moutinho, A., (2008),“Hover control of an UAV with backstepping design including input saturations” Control Systems Technology, IEEE Transactions on,16(3), 517-526.
[17] Hoffmann, G.M., Huang, H., Waslander, S.L., Tomlin, C.J., (2007), “Quadrotor helicopter flight dynamics and control: Theory and experiment,” In Proc. of the American Institute of Aeronautics and Astronautics (AIAA) Guidance, Navigation, and Control Conference, South Carolina.
[18] Bouabdallah, S., Noth, A., Siegwart, R., (2004), “PID vs LQ control techniques applied to an indoor micro quadrotor,” In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems,2451–2456.
[19] Benallegue, A., Mokhtari, A., Fridman, L., (2006), “Feedback linearization and high order sliding mode observer for a quadrotor UAV” In International Workshop on Variable Structure Systems (VSS’06), 365–372.
[20] Waslander, S.L., Hoffmann, G.M., Jang, J.S., Tomlin, C.J., (2005), “Multiagent quadrotor testbed control design: Integral sliding mode vs. reinforcement learning” In Proceedings of the IEEE/RSJ International Conference on Intelligent Robotics and Systems, 468–473.
[21] Bouffard, P., (2012), “On-board Model Predictive Control of a Quadrotor Helicopter Design, Implementation, and Experiments”Defense Technical Information Center (DTIC) Technical Report No. UCB/EECS-2012-241
[22] Kang, Y., Hedrick, J.K., (2009),“Linear tracking for a fixed-wing UAV using nonlinear model predictive control” Control Systems Technology, IEEE Transactions on,17(5), 1202-1210.
[23] Oktay T., Sultan C., (2013), “Constrained Predictive Control of Helicopters”Aircraft Engineering and Aerospace Technology, 85, 32-47.
[24] Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.M., (2000), “Constrained Model Predictive Control: Stability and Optimality” Automatica, 36(6), 789-814.
[25] Maciejowski, J.M., (2001),“Predictive Control with Constraints” Prentice Hall, Pearson Education.
[26] TÜBITAK Projesi, “Uçuş Kontrol Sistemi Ve Küçük İnsansız Hava Aracının Eş Zamanlı Tasarımı Ve Gerçek Zamanlı Uygulaması”, , 114M856
[27] Nelson, R.C. (1998),”Flight stability and automatic control” (Vol. 2). WCB/McGraw Hill.
[28] U.S. Military Handbook MIL-HDBK-1797, 19 December 1997.
[29] Shannon, C.E., Weaver, W., (1959), “The mathematical theory of communication” University of Illinois Press.
[30] SolidWorks, I., (2002), Solidworks corporation, Concord, MA.
[31] Paul, B.,(1979),“Kinematics and Dynamics of Planar Machinery” Prentice Hall.
[32] Kane, T.R., Levinson, D.A., (1985),“Dynamics, theory and applications” McGraw-Hill, New York.

Downloads

Published

25-01-2016

How to Cite

[1]
H. Çelik, T. Oktay, and İlke Türkmen, “MODEL PREDICTIVE KONTROL AND ROBUSTNESS TEST OF THE UNMANNED AERIAL VEHICLE (ZANKA-I) IN VARIOUS TURBULENCE”, JAST, vol. 9, no. 1, pp. 31–42, Jan. 2016.

Issue

Section

Articles