Large Eddy Simulation of a Stagnation Point Reverse Flow Combustor
Abstract
The complex unsteady behavior of a stagnation point reverse flow combustor (SPRF) is investigated numerically with large eddy simulation (LES) approach using an open source flow solver OpenFOAM. The SPRF combustor has a unique design where inflow and outflow ports are located in the same plane. This feature promotes stable and efficient combustion through internal gas recirculation, and also reveals a complex flow field inside the combustor. Instantaneous flow features, statistical behavior of the turbulent flow, the effect of grid resolution and energy spectrum are evaluated to study the capability of the LES approach for this combustor. The non-reacting cold flow results show overall very good agreement with experimental data, giving confidence that LES with k-equation subgrid model could be a very powerful tool for resolving such complex flow dynamics. Further analyses are extended for reacting cases to examine turbulence combustion interaction. The interaction of the flame with turbulent structures clarified the intense internal gas recirculation mechanism.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
The manuscript with title and authors is being submitted for publication in Journal of Aeronautics and Space Technologies. This article or a major portion of it was not published, not accepted and not submitted for publication elsewhere. If accepted for publication, I hereby grant the unlimited and all copyright privileges to Journal of Aeronautics and Space Technologies.
I declare that I am the responsible writer on behalf of all authors.